Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NO(x).

نویسندگان

  • R R Magness
  • J A Sullivan
  • Y Li
  • T M Phernetton
  • I M Bird
چکیده

Normal pregnancy and the follicular phase of the ovarian cycle are both estrogen-dominated physiological states that are characterized by elevations in uterine blood flow and endothelial nitric oxide synthase (eNOS) protein expression in the uterine artery (UA) endothelium. It is unknown if elevations in mRNA level account for the changes in protein or eNOS activity. We tested the hypothesis that pregnancy and the follicular phase are associated with increases in eNOS mRNA and the consequent elevated expression of eNOS protein results in increased circulating nitric oxide (NO) levels. UA were obtained from pregnant (PREG; n = 8; 110-130 days gestation; term = 145 +/- 3 days), nonpregnant luteal (LUT; n = 6), nonpregnant follicular (FOL; n = 6), and nonpregnant ovariectomized (OVEX; n = 6) sheep. Circulating NO levels were analyzed as total NO(2)-NO(3) (NO(x)). Western analysis performed on UA endothelial-isolated proteins demonstrated that eNOS protein levels were OVEX = LUT < or = FOL < PREG (P < 0.05), whereas eNOS mRNA expression (RT-PCR) in UA endothelial cells obtained by limited collagenase digestion was OVEX < LUT < FOL < PREG (P < 0.05). Pregnancy dramatically elevated eNOS protein (4.1- to 6.9-fold) and mRNA (2.4- to 6.9-fold) over LUT controls (P < 0.01). Circulating NO(x) levels were not altered by ovariectomy or the ovarian cycle but were elevated from 4.4 +/- 1.1 microM in LUT to 12 +/- 4, 22 +/- 3, and 41 +/- 3 microM at 110, 120, and 130 days gestation (P < 0.01). Systemic NO(x) levels in singleton (12.5 +/- 1.6 microM) were less (P < 0.01) than in multiple (twin 27.6 +/- 6.5 microM; triplet = 46 +/- 10 microM) pregnancies. Therefore, the follicular phase and, to a much greater extent, pregnancy are associated with elevations in UA endothelium-derived eNOS expression, although significant increases in systemic NO(x) levels were only observed in the PREG group (multiple > singleton). Thus, although UA endothelial increases in eNOS protein and mRNA levels are associated with high estrogen states, increases in local UA NO production may require additional eNOS protein activation to play its important role in the maintenance of uterine blood flow in pregnancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial vasodilator production by uterine and systemic arteries. III. Ovarian and estrogen effects on NO synthase.

During the follicular phase of the ovarian cycle, when the local estrogen-to-progesterone ratio is elevated, uterine blood flow is elevated. This vasodilatory response is reproduced by exogenous 17β-estradiol (E2β) administration via a nitric oxide (NO)-mediated mechanism. We hypothesized that endogenous ovarian estrogen and exogenous E2β treatment elevate expression of endothelial cell-derived...

متن کامل

Endothelial vasodilator production by uterine and systemic arteries. IX. eNOS gradients in cycling and pregnant ewes.

The follicular phase (FOL) and pregnancy exhibit increases in uterine blood flow (UBF), estrogen levels, and uterine artery (UA) endothelial nitric oxide synthase (eNOS) expression. UA branching within the mesometrium increases the total vascular cross-sectional area, which reduces the vascular perfusion pressure gradient, thus locally decreasing the blood flow velocity. Shear stress (SS) activ...

متن کامل

Endothelial vasodilator production by uterine and systemic arteries. VII. Estrogen and progesterone effects on eNOS.

Uterine blood flow (UBF) and uterine artery endothelial nitric oxide synthase (eNOS) expression are greatest during the follicular vs. luteal phase. 17 beta-Estradiol (E(2)beta) increases UBF and elevates eNOS in ovine uterine but not systemic arteries; progesterone (P(4)) effects on E(2)beta changes of eNOS remain unclear. Nonpregnant ovariectomized sheep received either vehicle (n = 10), P(4)...

متن کامل

CALL FOR PAPERS Fetal Physiological Programming Simultaneous imaging of [Ca ]i and intracellular NO production in freshly isolated uterine artery endothelial cells: effects of ovarian cycle and pregnancy

Yi, Fu-Xian, Ronald R. Magness, and Ian M. Bird. Simultaneous imaging of [Ca ]i and intracellular NO production in freshly isolated uterine artery endothelial cells: effects of ovarian cycle and pregnancy. Am J Physiol Regul Integr Comp Physiol 288: R140– R148, 2005. First published August 5, 2004; doi:10.1152/ajpregu. 00302.2004.—Pregnancy and the follicular phase of the ovarian cycle show ele...

متن کامل

Local effects of pregnancy on connexin proteins that mediate Ca2+-associated uterine endothelial NO synthesis.

UNLABELLED Uterine artery adaptations during gestation facilitate increases in uterine blood flow and fetal growth. HYPOTHESIS local expression and distribution of uterine artery connexins play roles in mediating in vivo gestational eNOS activation and NO production. We established an ovine model restricting pregnancy to a single uterine horn and measured uterine blood flow, uterine artery sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2001